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Introduction
• Closed-Brayton-cycle (CBC) thermal energy 

conversion is one available option for future 
spacecraft and surface systems

• Brayton system conceptual designs for milliwatt to 
megawatt power converters have been developed

• Numerous features affect overall optimized power 
conversion system performance

– Turbomachinery efficiency
– Heat exchanger effectiveness
– Working-fluid composition
– Cycle temperatures and pressures

Examples
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Simple Recuperated Brayton Cycle
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Brayton Cycle T-s Diagram 
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2-kWe Brayton Converter
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CBC with specified turbomachinery η, 0% compressor 
bleed, no bearing, windage, or EM losses

HeXe
NaK 393 K 5% Bleed 1150 K 1.22 kg/s
0.82 kg/s 0.138 MPa 0.043 kg/s 0.964 MPa 40.0 mol wt
0.87 kg/s 157 kWt 72% He

 395 K 0% 28% Xe
1150 K (1 of 2)

85.000% 90.000%
1.22 kg/s

400 K 920 K
0.500 MPa 0.515 MPa 313 kWt 320 kWt
CPR 2.00 Speed 45 krpm TPR 1.872
95 kW In EM loss 0.0 kWt 145 kW Out

Brg Loss 0.000 kWt 98%
107 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 0.0 kWt
216 kWt Ratio = 1.190 TIT/CIT 2.87

97% Cyc eff 31.90%

110.6 m2 902 K
550 K 222 kWt 0.991 MPa

0.999 MPa

530 K 569 K 95%
Tsink 0.276 MPa 0.506 MPa 920 K
200 K

DP/Pcold = 0.0052
DP/Phot = 0.0150

50.0 kWe

  C T  

100%

1.11 kWe
12.7%

16.1 gpm
DP 138 kPa

Recuperator

Turbo-
Alternator
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Gas Cooler
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CBC with specified turbomachinery η, 2% compressor 
bleed, no bearing, windage, or EM losses 

HeXe
NaK 393 K 5% Bleed 1150 K 1.25 kg/s
0.97 kg/s 0.138 MPa 0.051 kg/s 0.963 MPa 40.0 mol wt
1.03 kg/s 166 kWt 72% He

 395 K 2% 28% Xe
1143 K (1 of 2)

85.000% 90.000%
1.27 kg/s

400 K 915 K
0.500 MPa 0.515 MPa 332 kWt 339 kWt
CPR 2.00 Speed 45 krpm TPR 1.869
100 kW In EM loss 0.0 kWt 150 kW Out

Brg Loss 0.000 kWt 98%
116 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 0.0 kWt
235 kWt Ratio = 1.347 TIT/CIT 2.86

97% Cyc eff 30.10%

125.3 m2 894 K
550 K 223 kWt 0.992 MPa

0.999 MPa

518 K 575 K 95%
Tsink 0.276 MPa 0.506 MPa 912 K
200 K

DP/Pcold = 0.0050
DP/Phot = 0.0150

1.18 kWe
14.1%

19.1 gpm
DP 138 kPa

50.0 kWe

  C T  

100%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump
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CBC with map-based turbomachinery η, 2% compressor 
bleed, no bearing, windage, or EM losses 

HeXe
NaK 393 K 5% Bleed 1150 K 1.55 kg/s
1.20 kg/s 0.138 MPa 0.063 kg/s 0.962 MPa 40.0 mol wt
1.26 kg/s 199 kWt 72% He

 394 K 2% 28% Xe
1143 K (1 of 2)

82.051% 86.326%
1.58 kg/s

400 K 925 K
0.500 MPa 0.515 MPa 398 kWt 406 kWt
CPR 2.00 Speed 45 krpm TPR 1.869
128 kW In EM loss 0.0 kWt 178 kW Out

Brg Loss 0.000 kWt 98%
149 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 0.0 kWt
301 kWt Ratio = 1.328 TIT/CIT 2.86

97% Cyc eff 25.13%

157.4 m2 903 K
556 K 280 kWt 0.991 MPa

0.999 MPa

524 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 922 K
200 K

DP/Pcold = 0.0055
DP/Phot = 0.0150

50.0 kWe

  C T  

100%

1.28 kWe
15.9%

23.4 gpm
DP 138 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump
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CBC with map-based turbomachinery η, 2% compressor 
bleed, bearing losses only 

HeXe
NaK 393 K 5% Bleed 1150 K 1.64 kg/s
1.25 kg/s 0.138 MPa 0.066 kg/s 0.962 MPa 40.0 mol wt
1.31 kg/s 210 kWt 72% He

 436 K 2% 28% Xe
1144 K (1 of 2)

82.178% 86.664%
1.67 kg/s

400 K 925 K
0.500 MPa 0.515 MPa 420 kWt 428 kWt
CPR 2.00 Speed 45 krpm TPR 1.868
135 kW In EM loss 0.0 kWt 189 kW Out

Brg Loss 3.922 kWt 98%
157 kWt Wnd loss 0.000 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 3.9 kWt
323 kWt Ratio = 1.310 TIT/CIT 2.86

97% Cyc eff 23.82%

166.5 m2 904 K
556 K 297 kWt 0.991 MPa

0.999 MPa

528 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 922 K
200 K

DP/Pcold = 0.0056
DP/Phot = 0.0150

1.31 kWe
16.2%

24.4 gpm
DP 138 kPa

50.0 kWe

  C T  

100%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump
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CBC with map-based turbomachinery η, 2% compressor 
bleed, bearing and windage losses only 

HeXe
NaK 393 K 5% Bleed 1150 K 1.75 kg/s
1.34 kg/s 0.138 MPa 0.071 kg/s 0.962 MPa 40.0 mol wt
1.41 kg/s 224 kWt 72% He

 483 K 2% 28% Xe
1145 K (1 of 2)

82.298% 87.084%
1.79 kg/s

400 K 924 K
0.500 MPa 0.515 MPa 447 kWt 456 kWt
CPR 2.00 Speed 45 krpm TPR 1.868
144 kW In EM loss 0.0 kWt 203 kW Out

Brg Loss 4.127 kWt 98%
168 kWt Wnd loss 4.782 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 8.9 kWt
350 kWt Ratio = 1.320 TIT/CIT 2.86

97% Cyc eff 22.35%

180.0 m2 904 K
555 K 318 kWt 0.991 MPa

0.999 MPa

529 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 923 K
200 K

DP/Pcold = 0.0058
DP/Phot = 0.0150

50.0 kWe

  C T  

100%

1.38 kWe
16.6%

26.3 gpm
DP 138 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump



13Glenn Research Center
at Lewis Field RPT/mjb

CBC with map-based turbomachinery η, 2% compressor 
bleed, bearing, windage, and EM losses 

HeXe
NaK 393 K 5% Bleed 1150 K 1.81 kg/s
1.38 kg/s 0.138 MPa 0.073 kg/s 0.962 MPa 40.0 mol wt
1.45 kg/s 231 kWt 72% He

 507 K 2% 28% Xe
1145 K (1 of 2)

82.348% 87.302%
1.85 kg/s

400 K 924 K
0.500 MPa 0.515 MPa 462 kWt 471 kWt
CPR 2.00 Speed 45 krpm TPR 1.868
149 kW In EM loss 2.6 kWt 211 kW Out

Brg Loss 4.224 kWt 98%
173 kWt Wnd loss 4.704 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 11.559 kWt
365 kWt Ratio = 1.315 TIT/CIT 2.86

97% Cyc eff 21.65%

186.4 m2 905 K
555 K 329 kWt 0.991 MPa

0.999 MPa

531 K 581 K 95%
Tsink 0.276 MPa 0.506 MPa 923 K
200 K

DP/Pcold = 0.0060
DP/Phot = 0.0150

1.39 kWe
16.9%

27.1 gpm
DP 138 kPa

50.0 kWe

  C T  

95%

Recuperator

Turbo-
Alternator

Reactor
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Loss Sensitivities
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HeXe
NaK 393 K 5% Bleed 1150 K 2.77 kg/s
1.97 kg/s 0.137 MPa 0.104 kg/s 2.888 MPa 40.0 mol wt
2.08 kg/s 339 kWt 72% He

 574 K 2% 28% Xe
1147 K

80.269% 83.766%
2.83 kg/s

400 K 934 K
1.500 MPa 1.544 MPa 678 kWt 692 kWt
CPR 2.00 Speed 45 krpm TPR 1.870
234 kW In EM loss 3.3 kWt 310 kW Out

Brg Loss 12.986 kWt 98%
272 kWt Wnd loss 9.820 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 26.140 kWt
582 kWt Ratio = 1.223 TIT/CIT 2.87

97% Cyc eff 14.74%

281.0 m2 915 K
559 K 513 kWt 2.974 MPa

2.994 MPa

547 K 585 K 95%
Tsink 0.275 MPa 1.518 MPa 933 K
200 K

DP/Pcold = 0.0049
DP/Phot = 0.0150

1.55 kWe
21.8%

38.7 gpm
DP 139 kPa

50.0 kWe

  C T  

94%

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

HeXe
NaK 393 K 5% Bleed 1150 K 2.53 kg/s
1.81 kg/s 0.137 MPa 0.095 kg/s 2.888 MPa 40.0 mol wt
1.90 kg/s 311 kWt 72% He

 521 K 2% 28% Xe
1146 K

79.851% 83.408%
2.59 kg/s

400 K 934 K
1.500 MPa 1.544 MPa 621 kWt 634 kWt
CPR 2.00 Speed 45 krpm TPR 1.870
215 kW In EM loss 3.3 kWt 282 kW Out

Brg Loss 5.279 kWt 98%
250 kWt Wnd loss 8.371 kWt DP/P = 0.0270

DP/P = 0.0100 Losses 16.983 kWt
525 kWt Ratio = 1.228 TIT/CIT 2.86

97% Cyc eff 16.09%

255.8 m2 914 K
560 K 466 kWt 2.974 MPa

2.994 MPa

544 K 586 K 95%
Tsink 0.275 MPa 1.518 MPa 933 K
200 K

DP/Pcold = 0.0048
DP/Phot = 0.0150

50.0 kWe

  C T  

94%

1.52 kWe
20.4%

35.5 gpm
DP 139 kPa

Recuperator

Turbo-
Alternator

Reactor

Gas Cooler

HSHX

Main Radiator

ALIP Pump

Ongoing research is 
focused on reducing 
uncertainty in loss 

models
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Timescales, Transient Modeling and 
Validation

0)( =−+ ec TTAh
dt
dTVcρ

τ/)( tetΘ −=

AhVc cρτ =

kDhBi c=
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Specific mass curve for turboalternators
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Specific mass curves for heat exchangers
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Mass Modeling Techniques

Best when detailed 
design information 

is coupled with 
empirically rooted 
design algorithm

Recuperator
Item Value Units
Total Length = 0.820 m
Total Width = 0.325 m

Total Height = 0.459 m
Divider Plate Thick = 0.000203 m

Sideplate Thick = 0.00254 m
Outer shell Thick = 0.00356 m

Headers
Item Value Units

Inlet Header Length = 0.193 m
Inlet Header Width = 0.248 m

Outlet Header Length = 0.203 m
Outlet Header Width = 0.257 m

Fin Pitch = 197 fins/m
Fin Length = N/A

Fin Thickness = 0.0001524 m
Core General

Item Value Units
Core Length = 0.42418 m
Core Width = 0.313182 m

Fin Pitch = 630 fins/m
Fin Length = 0.00318 m

Fin Thickness = 0.0001524 m
Cold Stream Core (High Pressure)

Item Value Units
Flow Area = 0.0513 m2 

Plate Spacing = 0.00318 m
DHYD = 0.001946 m

# Sandwiches = 60
Heat Xfer Area = 46.5 m2 

Hot Stream Core (Low Pressure)
Item Value Units

Flow Area = 0.0645 m2 
Plate Spacing = 0.00389 m

DHYD = 0.002073 m
# Sandwiches = 61

Heat Xfer Area = 54.9 m2 
Recuperator mass = 158 kg
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Conclusions
• Each performance model’s required capabilities are driven by the design question being 

investigated
– Conceptual design analyses used to size closed-Brayton-cycle space power conversion 

subsystems must include realistic representations of turbomachinery efficiencies, mechanical 
losses and electromechanical losses

– Efficiency errors of 30% and mass estimate errors of 20% are possible using even moderately 
unrealistic representations

• Transient CBC performance models can benefit from timescale identification and 
segregation

– Characteristic electrical, mechanical and thermal timescales in closed-Brayton-cycle subsystems 
can vary from fractions of milliseconds to hours

– Simpler development and use of integrated dynamic models may be possible using timescale 
separation techniques

• Dimensionless similitude between ground test units and flight systems is essential to 
meaningful experimental validation of transient models

– Special attention must be devoted to evaluating ground test hardware with respect to flight-like 
characteristic dimensionless scales

• Cycle energy balances are sensitive to mechanical losses in bearings and alternators
– Using two available models, a 40% difference in mechanical loss predictions was demonstrated 

for a 100-kWe (two-engine) closed-Brayton-cycle subsystem operating at 3 MPa peak pressure
– More research is needed to reduce the uncertainty in bearing and windage loss predictions

• Closed-Brayton-cycle subsystem mass estimates are typically empirically based or 
calculated from more detailed component design information

– Both methods have advantages and disadvantages
– Grounding a mass estimate in “as-built” data is frequently advantageous



20Glenn Research Center
at Lewis Field RPT/mjb

Back-up Charts
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Reactor
Heat Source

Power Conversion

Electric Propulsion

Heat RejectionPower Management
& Distribution

Science
Payload

Nuclear Electric Propulsion

NEP Enables:
Outer Planet Orbiters (rather than Flybys)

Multiple Targets on Single Mission
High Power, Long Duration In-Situ Science

High Data Rate Communications

Trajectory Analysis



23

Nuclear Electric Surface Power
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